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Abstract. There is a growing demand for multiple output prediction
methods capable of both minimizing residual errors and capturing the
joint distribution of the response variables in a realistic and consistent
fashion. Unfortunately, current methods are designed to optimize one
of the two criteria, but not both. This paper presents a framework for
multiple output regression that preserves the relationships among the
response variables (including possible non-linear associations) while min-
imizing the residual errors of prediction by coupling regression methods
with geometric quantile mapping. We demonstrate the effectiveness of
the framework in modeling daily temperature and precipitation for cli-
mate stations in the Great Lakes region. We showed that, in all climate
stations evaluated, the proposed framework achieves low residual errors
comparable to standard regression methods while preserving the joint
distribution of the response variables.

1 Introduction

Multiple output regression (MOR) is the task of inferring the joint values of
multiple response variables from a set of common predictor variables. The re-
sponse variables are often related, though their true relationships are generally
unknown a priori. An example application of multiple output regression is to
simultaneously estimate the projected future values of temperature, precipita-
tion, and other climate variables needed for climate change impact, adaptation
and vulnerability (CCIAV) assessments. The projected values are used as the
driving input variables for phenological and hydrological models to simulate the
responses of the ecological system to future climate change scenarios. To ensure
the projected values are realistic, there are certain constraints on the relationship
among the response variables that must be preserved; e.g., minimum tempera-
ture must not exceed maximum temperature or liquid precipitation should be
zero when temperature is below freezing. While there have been numerous mul-
tiple output regression methods developed in recent years [7[20/4JT812], most
of them are focused on fitting the conditional mean or preserving covariance
structure of the outputs. Such methods do not adequately capture the full range
of variability in the joint output distribution, as illustrated in Figure [Ifa).

The inability of standard regression-based approaches to reproduce the
shape of the true distribution of output variables, even for univariate response
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Fig. 1. Scatter plot of observed daily maximum and minimum temperature at a climate
station in Michigan, USA

variables, is well-documented [2]. Univariate distribution-driven approaches such
as quantile mapping (QM) [I3] and statistical asynchronous regression (SAR)
[17] have been developed to address this limitation, but the accuracy of these
approaches is generally poor since they are not designed to minimize residual
errors. Quantile mapping approaches map a univariate predictor variable x to
its corresponding response variable y by transforming the cumulative distribu-
tion function (CDF) of z to match that of y. More recently, a bivariate quantile
mapping approach (BQM) (see Figure (b)) has been developed to generate
bivariate response values that mimic the joint distribution of the observed re-
sponse data [I1]. However, as will be shown in this paper, the residual error is
significantly worse when compared to regression-based methods because the po-
sition and rank correlation between the predictor and response variables remain
invariant under QM-based transformation, which in turn, hinders its ability to
minimize residual errors. Thus, unless the predictor variable has a high rank cor-
relation with the response variable, the residual error upon applying QM-based
approaches is likely to be large.

This suggests a possible hybrid approach to improve both the residual errors
and distribution fitting is by first applying a regression-based method to trans-
form the predictor variables so that their rank correlation with respect to the
response variable is high, before applying quantile mapping to adjust for the fit
in distribution. However, maximizing the rank correlation of the data points is
necessary but not sufficient condition for improvement in the residuals for QM,
unless the response values of the data points are uniformly spaced. Hence, the
need for position regularization, that would prioritize the prediction accuracy
of data points whose position, when incorrectly estimated, results in high resid-
ual. The term ‘position’ here refers to the geometric quantile of a data point
with respect to a multivariate distribution, which is analogous to the quantile
of a data point in the case of univariate distribution. In this paper, we present
a position-regularized, multi-output prediction framework called Multi-Output
Contour Regression (MCR), that addresses the dual objective of preserving
the associations among the multiple output variables as well as minimizing
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residuals. MCR is able to achieve the dual objective by applying a novel, position-
regularized regression method, followed by geometric quantile mapping (GQM)
to improve the fit in distribution. The position-regularized regression helps to al-
leviate the limitation associated with the rank invariant property of QM, which
contributes to the high residuals of QM-based approaches. MCR additionally
addresses the challenge of ensuring that its prediction of the response variables
will always abide by the constraints of the actual response data. MCR is also
not limited by the number of predictor variables that may be used nor does it
require them to have high correlation with the response variables, unlike quantile
mapping. The flexible nature of our framework allows for the incorporation of
other loss functions such as the L; loss used in quantile regressionl.

2 Related Work

Supervised learning methods for predicting continuous-valued outputs may be
categorized as either accuracy-driven or distribution-driven. Accuracy-driven ap-
proaches such as multiple linear regression (MLR), lasso regression, neural net-
works, and analog methods [I3] are commonly used with emphasis on minimizing
sum-square residual (SSR) errors. In contrast, distribution-driven approaches fo-
cus on reproducing the distribution characteristics of the output variable. These
approaches include quantile mapping (QM) [13], Equidistant CDF Matching
(EDCDFm), statistical asynchronous regression (SAR) [I7] and the transfer
functions proposed by Piani et al. [I9]. These approaches are applicable even
when the predictor and response variables are asynchronous and are generally
susceptible to high residual errors. Given the drawbacks of accuracy-driven and
distribution-driven approaches, a hybrid method known as Contour Regression
(CR) [2] was developed to simultaneously minimize error and preserve the shape
of the fitted distribution. CR extends the loss functions of standard regression
methods (including linear and quantile regression) to regularize the area between
the CDF of the response variable and the CDF of the predicted output.

In addition to the single output regression (SOR) approaches, techniques for
inferring multiple response variables (MOR) simultaneously have been devel-
oped, including multi-output regression [I0] and structured output regression
[5]. A number of these techniques focus on penalizing the regression coefficients
using low rank methods such as reduced rank regression [12]. However, these
approaches do not consider the correlation among the output variables. Another
common approach to multiple output prediction is to penalize the shared input
space, for co-linearity, such as partial least square regression discriminant anal-
ysis (PLSDA) [I8]. However these models, too, do not capture the association
among response variables. Curds and Whey is an example of regression based
approach that considers the output correlation [7]. However, it assumes the rela-
tionship among the response variables is linear. Multiple output SVR is another
approach that takes advantage of correlation among response variables and ex-
tends Support Vector Regression (SVR) to multi-output systems by employing

! We omit the derivation for other loss function in this paper due to lack of space.
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co-kriging, to account for the cross covariances between different response vari-
ables [20]. Group lasso [14], LL-MIMO [6], gaussian process MOR [3] are other
examples of MOR.

However, none of the these approaches preserve the full range of variability
of the joint distribution of the response variables. He et al. [I1] proposed bi-
variate quantile mapping to extend QM to bivariate space. The method uses
the intuition proposed by Buja et al. [§] regarding geometric quantiles. While
this approach is capable of capturing the distribution characteristics of bivariate
response variables, similar to QM, it is susceptible to high residual errors.

3 Preliminaries

Let X = [x1,..,X,]T be an (n x d) data matrix and Y = [y1,..,y.]? be the
corresponding (n x ¢) response matrix, such that x; € R and y; € R? are column
vectors representing the respective values of predictor and response variables for
the i'" data point. The objective of multi-output regression (MOR) is to learn a
target function h(x, £2) that best estimates the multi-output response y, where
2 = (wy,..,wyq) is the parameter set of the target function.

For a univariate random variable X € R, let Fix(z) be its cumulative distri-
bution function (CDF), i.e., Fx(xz) = P(X < z). The corresponding a-quantile
of X is given by inf {x € R : Fx(z) > a}. Intuitively, each quantile indicates the
value in which a certain fraction of the data points are below it, and thus, pro-
vides a measure of its position in the data. For example, the median, which
is equivalent to the 0.5-quantile, is the central location of the distribution.
More generally, the position [I6] of data point z relative to a set of points
Z = (z1,..,2m)7 is given by

wo, ifw#0
pale) = |\ Sina-z)  where nw) = {(')j”’ e
For univariate data, the position pz(z) is equal to 2Fz(z) — 1, where Fz(z) is
the cumulative distribution function of Z. The multi-dimensional equivalent of
quantile function is geometric quantile [9].

Distribution correction methods such as quantile mapping is only applicable
if one can match the position of a data point in one univariate distribution (say
for x) to its corresponding position in another univariate distribution (say for
y). This is possible using the preceding definition of position for univariate data
since the values of pz are always fixed in the range between [—1, +1] irrespective
of the values in Z. Unfortunately, when extended to multivariate positions, the
range of values for pz may vary depending on the values in Z. To overcome this
problem, He et al. [11] introduce the notion of a stationary position by iteratively
applying the following position transformation function until convergence:

k— k—
E (7) = 1 <~ py '(2) —py ' (yi) _ Z zZ—-Yi (1)
Py ~ kn k—1 NS VAT = wn lz—y;|
i=1 ” pY (Z) pY (yz) ” Yi
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Here each component in y; must be converted to its marginal rank first before
applying the position transformation function. Marginal rank refers to the rank
of the data point divided by the largest rank and then normalized to the range
[—1, 1]. The normalization is done to negate the effect of variables having values
that correspond to different ranges. Data points with normalized marginal rank
close to +1 correspond to extreme values for the particular variable, while those
close to 0 are located near the median of the distribution. In practice, the number
of iterations needed to reach a stationary distribution is quite small, typically
K > 5 [11]. For univariate data, it can be shown that P* reaches a stationary
distribution at k = 1.

The term x in Equation () is a normalization factor to ensure the distribution
of the geometric positions is supported in a g-dimensional unit hypersphere.
In the case of bivariate response variable Y, the stationary geometric quantile
distribution is circularly symmetric around the origin, with the radial density of
r/v/1 —7r2 for r € (0,1) [IT]. Therefore,

/1 "o = r
KR = T R =
o V1I—1r? 4

In this paper, we denote the position of the multivariate data points in Y as
Py = [py(y1), . Py (yn)]T, where py(yi) € [-1,1]9. We also use the notation
Zxy = p;(l (py (y)) to represent a point in the domain of X that has the same
geometric quantile position as the data point y in Y, i.e., px(zxy) = py(¥).
Consequently, zyy (y;) = y;. Finally, let Zxy = [zxy(y1)T, .., zxv (yn)T]* be
the geometric quantiles in X that correspond to the data points in Y.

3.1 Quantile Mapping-Based Approaches

Quantile mapping transforms a univariate predictor variable X to its correspond-
ing response variable Y by adjusting the cumulative distribution function Fx to
match that of Fy:

QM : 5 = Fy'(Fx(z)) (2)

It can be shown that QM preserves the rank correlation] between the variables.
For instance, consider the example in Table [[l where y is the response variable
and x1, X2 are two independent predictor variables. Let QM (x;) and QM(xz2) be
the corresponding QM outputs for x; and x5, respectively. If we sort the vectors
in ascending order, it is easy to see that the resulting rank vectors are invariant
under QM transformation. As a result, the rank correlation between x; (or x2)
and y is identical to the rank correlation between QM (x1) (or QM(x2)) and y.
Furthermore, the empirical CDF for QM(x;) as well as QM(x3) are identical to
that for Yy, i.e., Fy = FQM(xl) = FQM(x2)~

2 Examples of rank correlation measures include Kendall 7 and Spearman’s p coeffi-
cients.
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Even though quantile mapping was able to replicate the empirical distribution
of y perfectly, QM(x;1) has a higher residual error than QM(x3z). This can be
explained by the lower rank correlation between x; and y compared to the rank
correlation between x5 and y. Note that the inverse relationship between rank
correlation and residual error holds only if the values of the response variable
are uniformly spaced. For example, if the response value y for the fourth data
point changes from 0.4 to 0.7, the residual error for QM(x2) increases from 0.02
to 0.32, and is larger than the residual error for QM(x1), which remains at 0.06.
In this case, a high rank correlation for x, does not translate to lower residual
error when applying quantile mapping. A formal proof showing the relationship
between rank correlation and residual error for uniformly spaced data is given
in the next section.

Table 1. Quantile Mapping Table 2. Quantile Mapping
x1 x2 y  QM(x1) QM(x2) x3 x4y QM(xs) QM(x4)
0.6 0.7 0.2 0.1 0.2 0.70.6 0.2 0.2 0.1
0.80.6 0.1 0.3 0.1 0.6 0.7 0.1 0.1 0.2
0.709 0.3 0.2 0.4 0908 0.3 0.7 0.3
0908 04 0.4 0.3 0.80.9 0.7 0.3 0.7

SSR= 0.06 0.02 SSR= 0.32 0.02

Since most data sets are non-uniform, maximizing rank correlation is not a
sufficient condition to ensure a low residual error. Nevertheless, we observe that
data points associated with quantiles that are located in sparse regions (i.e., far
from their next closest quantiles) will contribute to higher residual error when
incorrectly ranked compared to data points associated with quantiles located in
dense regions. This is demonstrated by the example shown in Table[2l where both
x3 and x4 have the same rank correlation with respect to the response variable
y, yet have different SSR. The response values for the first three data points
(0.2, 0.1, and 0.3) are closer to each other than the last data point (0.7). An
incorrect ranking of the fourth data point will lead to much higher residual error
compared to the first three data points. Since x3 ranked the fourth data point
incorrectly, its residual error is larger than x4 even though they both have the
same rank correlation. This suggests a possible heuristic for improving both rank
correlation and residual error by emphasizing on data points that contribute to
high residual errors in prediction if ranked incorrectly.

3.2 Rank Correlation and Residual Errors of Quantile Mapping

This section presents several properties of the QM approach with respect to
the rank correlation and residual error of its output. First, we show that quan-
tile mapping preserves the rank correlation between the predictor and response
variables.
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Proposition 1. Rank correlation is invariant under QM transformation if the
values of the predictor and response variables in a data set are unique.

Proof. Consider a data set D = {(z;,v;)}—; that contains n points. Let §; be the
quantile mapped value for the data point with predictor variable x;. To prove
that rank correlation is invariant under QM transformation, it is sufficient to
show that the rank for x; is identical to the rank of g; after quantile mapping.
Without loss of generality, assume the data points in D are sorted in increasing
order of their z values. Thus, the rank for data point z; is ¢ (since the x values
are unique). Equation (2] can be rewritten as follows

Fy (i) = Fx/(x;)

Since Fx(z;) = i/n, therefore Fy (§;) = Fx(z;) = i/n. Given that the response
values y; are distinct, the rank for g; is also i. &

Next, we illustrate the relationship between rank correlation and residual error
of QM output for data sets with uniformly spaced response values.

Proposition 2. The SSR of QM output is negatively proportional to the rank
correlation of the input and a uniformly spaced response data.

Proof. Given n data points, let r; and s; be the respective ranks of the i
input data point z; and the corresponding response output y;. Without loss
of generality, we assume that each data point has a unique rank. Since y is
uniformly spaced, y; = s;c1 + cg, where ¢g and ¢; are constants. Similarly, the
QM output §; = r;¢1 + ¢g. The Spearman rank correlation can be written

_ 2= 7)(si— %)
Vi (ri =72 5 (si — 5)?

We have p = (1/c2)(3_, risi + ¢3), where, ¢ and c3 are constant for a fixed n.

Given, SSR = 3", (y; — §;)* and the QM output ¥ is a reordered instance of y,
we have SSR = 23", y2 — >, yiGi). Y., Yili = (c) >, risi + c4. where, ¢4 is a
constants for a fixed n. Therefore, SSR = 2(>", y? — (cica)p — c3 — ca). Since, co
is a positive constant, (c3cz) will always be positive. Hence, SSR is negatively
proportional to p when y is uniformly spaced. &

p

We next show that the output of QM that perfectly replicated the response
variable can be improved to have lower residual errors by correcting the ranks
of the predictor variable to better match the response variable.

Proposition 3. Correcting the ranks of data points in x that do not match the
rank of the corresponding data point in 'y, maintains, if not, improves the SSR
of QM output.

Proof. Let elements of Ry1, Rx2 and O be the quantile positions of data points
in x1, x2 and y, respectively. Given, the QM output of x1 can be improved to
have lower residuals, SSRx1 = >_,¢21(i)/n > 0. Consequently, 33, such that
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Rx1(j) # O(j). Let x2(i) = x1(i) Vi, where Rx1(¢) = O(i) and Jk, such that
Rx1(k) # O(k) and Rx2(k) = O(k) or Rx2(k) = Rx1(k). Therefore, Vi, 2, (i) >
£2,(i). And since SSR = Y &2, we have SSRy2 < SSRx1. Thus proving that it
SSR of QM output can be improved by correcting the ranks of those data points
that do not have the same rank as its corresponding response data point. &

Improving the rank correlation of predictor variable to perfectly match the re-
sponse variable would result in QM output having zeros SSR.

Proposition 4. The residual error obtained from QM is zero when there is
perfect rank correlation between predictor and response variable.

Proof. Let the elements of R and O be the quantile positions of the data points
in x and y respectively. Let &; = [F, '(O;) — Fy '(R;)| be the residual error of
ith data point. Therefore, SSR = 2 /n. Given a perfect rank correlation (I" = 1)
between predictor and response variable, we have Vi, (R; = O;). Consequently,

i = |F; 1 (0i) — F;1(0;)| = 0. Therefore, SSR =3, ¢7 /n = 0. &

Hence, we propose a framework that improves on the ordering of the predictor
variables to better match the response variable in order to minimize the SSR of
a QM output.

4 Multi-Output Contour Regression Framework(MCR)

Since QM and regression-based approaches have their own distinct advantages
which have been successfully exploited in a hybrid manner by approaches such
as CR, we propose a framework that extends the intuition behind hybrid ap-
proaches that exploits the unique advantages of both QM and regression, to
work in a multi-output setting. The approach uses a position regularized regres-
sion function h(x, fl) that prioritizes matching the positions of output to best
match the positions of the observed response data. This step is followed by cor-
recting the geometric quantiles of the output from the previous step to match
the observed response data using the intuition of QM. This hybrid approach
addresses the limitation of QM regarding the number of predictor variables that
may be used as well as requirement of the predictor variables being highly cor-
related to the response variable. We further enhanced the hybrid approach to
be flexible enough to work in a multi-output setting so as to be able to capture
the multi-output associations that are often ignored.

To prioritize improving the positions of the output, the proposed multi-output
contour regression (MCR) framework learns the regression function h(x, £2). The
regression function h(x, fl) consists of two components. The first component is
similar to conventional regression loss function where the data matrix is made
to regress with respect to the observed response variable. This component em-
phasizes minimizing residual error of the regression function.

The second component of h(x, fl) is the position regularizer that helps improve
rank correlation of h(x, {2) and y. At a first glance, one would expect the second
term to be regressing on the position of the data points. Instead of regressing
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on the position of the data points, we regress on the geometric quantiles of the
data points obtained by inverse mapping their positions to the output response
space. This is done so that the position regularizer assigns a larger penalty to
those data points whose position when incorrectly estimated, results in a larger
minimum residual errors. To accomplish this, the data matrix is made to regress
on zy, where,

2yy () = P  (PY () (3)

is the geometric quantile value in the h(x, f)) regression output space that cor-
responds to the position of the observed response variable .
The regression function of MCR is shown in Equation (@),

min}  (YL(h(xi, ), yi) + (1= 1)E(h(xi, 2), 7)) (4)

where 0 < v < 1 is a user defined parameter that may be used for either
prioritizing fidelity of regression accuracy or its position correlation.

L can be any generic loss function such as ordinary least square (that multiple
linear regression adopts), or quantile mapping (if certain quantiles are to be
prioritized overs others, such as in the case of a heavy tail distribution).For
instance, when the loss function £ is ordinary least square, Equation [l takes the
form

(V(xi 125 = yi)* + (1= 7)(x] 25 — 29y)?)
1

q n
min
Q

j=11

which corresponds to the following matrix form

Q= arg m!i?n tr(y(X2 -=Y)' (X2 - Y) + (X2 — Zyy) (X2 — Zgy))

The regression parameters (2 is learnt in an iterative manner. At each itera-
tion, the regression output space from the previous iteration is used to compute
Zyy in the second component of the regression function h(x, f)) For the very
first iteration, the regression output space is that of regular multiple linear re-
gression.

Once h(x, fl) is learnt, the MCR prediction for a given data point x having
corresponding observed multi-output response y and a regression estimation of
¥ = h(x, 2) is obtained by inverse geometrically quantile mapping p’;,(y) to its
corresponding value in the observed response variable space, to give the MCR
prediction Zy ¢,

MCR : 2y = py" (py (h(x. 2))) ()

where, p;k (p’;(gj)) maps the stationary geometric quantile position of h(x, {2)
to its corresponding data point in Y.
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To summarize, multi-output contour regression (MCR) performs multi-output
regression of the predictor variables such that the position of its output is highly
correlated with respect to position of the observed response variable, thereby
reducing position errors of the multi-output regression results. This multivariate
regression output is then mapped to its corresponding geometric quantile coun-
terpart in the observed multi-output response space using geometric quantiles.
The rationale behind using the regularized regression results, prior to perform-
ing multi-output geometric quantile mapping in MCR, is to improve on SSR
by increasing the correlation among the multivariate ranks of the predictors and
response variable.

4.1 Estimating Inverse Geometric Quantile Position

The value z(p) that corresponds to a given geometric quantile position p, in a
multivariate distribution Fy i.e., py (p), is empirically computed by minimizing
the generalized multivariate quantile loss function [9]

o . o B ’
2(p) argzrg;g;(llyz zl+ <p,yi —z>) (6)

where, p € R? and < .,. > denotes the Euclidean inner product. So long all
the values of y; does not fall on the same line, z(p) will be unique for a given
p for ¢ > 2 [9]. Algorithms such as Newton-Raphson’s method can be used to
solve the above loss function geometric quantile z(p) using the following update

72— 7 — (;s, where, ¢ = Z?:l((nm)p — |z —yil| 7Yz — yi))
=" lz—yill (I = Iz — yil| 7 % (2 — yi)(z — yi)T)

For a univariate distribution, Fy, it can be easily shown that equation (@)
boils down to the same loss function used to identify the ath regression quantile
in a linear regression setup for quantile regression [I5], where 0 < o < 1 and
p=2a—1.1e, > 7 (|lyi — 2| + p(y; — 2)) is minimized for z that corresponds to
the ath quantile of Y.

4.2 Alternate Approximation-Based Approach for MCR

If one can make the assumption that given the position (p) of a test data point
(y'es') that belongs to the distribution Fy, and Jy; € Y such that y**st ~ y,
then the search space for z = y***! can be limited to data points in Y.

Given that the search space for z is finite it will not always possible to find
the exact same point in Fy using the loss function J, as it returns a vector.
Alternatively, the following range bound approximation that is equivalent to
Equation [f] can be used to find the best solution [I119].

argmin > {lyi 5 ||+ (vi )" p) @

i=1

where £ in the scaling factor chosen in Equation (@).
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As shown in the experiment section, there was only a marginal performance
deterioration in the solution obtained from the above approximation, due to
sufficient amount of training data points. Another approximation approach with
even less tighter bounds than Equation [7, having O(n) time complexity is to use
the following Euclidean approximation.

Z = arg n;iin((p —py(y:) (P —py(yi)") (®)

The R-limited approximation approach (Equations [7]) as well as the Euclidean
approximation approach (§) show considerable improvement in the computation
time across varying training size (Figure [2a) and test size (Figure PIb), with
minimum deterioration in terms of accuracy of the inverse geometric quantile
positions estimated.

60 40
Newton Raphson Newton Raphson
0 e R—limited Approximation 0 ol ™ R-limited Approximation
'S 40| | = Euclidean Approximation J 5 = Euclidean Approximation
2 @ 20
) e
o 20 o
£ E 10
= =
1
0 0
0 500 1000 1500 2000 0 250 500 750 1000
Training size Test size
(a) (b)

Fig. 2. Relative computation time of the various approximation-based approaches for
estimating inverse geometric quantile positions

5 Experimental Results

The objective of the experiments was to evaluate the ability of MCR in replicat-
ing the associations among multiple climate response variables while minimizing
sum square residuals.

All the algorithms were run using climate data obtained at fourteen weather
stations in Michigan, USA. The response variables used were maximum temper-
ature, minimum temperature, and the total precipitation for each day spanning
twenty years. The predictor variables used in this study are simulated climate
data obtained from Regional Climate models (RCM) that best correspond to
the observed response variables at each of the fourteen weather stations. Three
different RCM data sets for each of the climate stations were obtained from
North American Regional Climate Change Assessment Program (NARCCAP)
[1]. The three RCMs used are the Canadian Regional Climate Model (CRCM),
the Weather Research and Forecasting Model (WRFG) and the Regional Cli-
mate Model Version-3 (RCM3). For the purpose of the experiments, there were
a total of 126 data sets with univariate response variables, 126 data sets with
bivariate responses and 42 data sets with trivariate responses.
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5.1 Experimental Setup

Twenty year of predictor and response data, spanning the years 1980-1999 was
split into two parts for training and testing. For the purpose of the evaluation of
the relative skill in preserving associations among the multi-output responses,
popular regression and quantile mapping approaches such as MLR, Ridge re-
gression (Ridge), QM, EDCDFm, MOR, CR, BQM as well as ad-hoc approaches
that sequently combine regression and quantile mapping approaches were used
as baseline. An example of the ad-hoc baseline approach used is MOR in com-
bination with BQM (RBQM) and MLR and QM (RQM). v was set to 0.5 for
all experiments. For CR and MCR based experiments, the maximum number of
iterations was set to ten.

After discarding the missing values, each experiments run for each of the sta-
tions, across all the data sets, had a minimum of one thousand training and test
data points. All the results provided in the following section are on test data
(out-of-sample results). Kendall 7 rank correlation and Spearman p rank corre-
lation were the two rank correlation metrics used for evaluation univariate rank
correlation. In the following experiment section, we included results of only one
of the two rank correlation metrics, when their results were very similar. Root
mean square error (RMSE), was used as a metric to compare the performance
of the various approaches evaluated in terms of its output residual errors. Two
dimensional and three dimensional scatter plots were used to visualize the rel-
ative skill of the various approaches in preserving the associations among the
multi-output responses.

5.2 Results

Univariate MCR. For academic reasons, the rank correlation of the various
response variables were computed in a single output MCR setting using Kendall
7 rank correlation and Spearman p rank correlation. It was found that across
all the different data sets and stations and response variables (i.e, 126 datasets),
MCR consistently improved the rank correlation across both rank correlation
metrics. For the purpose of comparing the intra-performance of datasets that
shared similar response variables, the 126 individual data sets that corresponded
to univariate response data were grouped into nine larger data sets.

Figure[Blis a box plot representing the percentage of stations in each of the nine
data sets where the rank correlation regularizer used in Equation @] improved
rank correlation and reduced residuals when compared to baselines approaches.

The box plot in Figure d shows that in spite of MCR’s reported improvement
across majority of stations in terms of 7 and RMSE, for both regression and
quantile mapping based approaches, the improvement was not significant when
compared to the regression based approaches. However, the rank correlation
regularizer showed a significant improvement in terms of RMSE at each station
when compared to the corresponding quantile mapping based approaches.
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Fig. 3. Box plot of the percentage stations where MCR showed improvement over
single output baselines, in terms of Kendall 7 rank correlation and RMSE, across all

RCM’s and variables
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Fig. 4. Box plot of MCR’s improvement over baseline approaches in terms of Kendall
7 rank correlation and RMSE, across all RCM’s and variables
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Fig.5. Scatter plot portraying the fidelity of forecast values of various approaches
replicating the observed associations among the bivariate temperature response

variables
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Bivariate MCR. Bivariate modeling for all the combinations of bivariate re-
sponse variables were evaluated. As shown in Figure Bl MCR performed best in
replicating both the bivariate associations and minimizing SSR, although BQM
performed as well in terms of replicating the bivariate associations. Regression
based approaches (both SOR and OMR) fared poorly in preserving associations
in the 2D space, while single output quantile mapping based approaches, were
very sensitive to correlation of the predictor variables with response resulting in
poor bivariate associations in spite of replicating the marginal distributions of
the individual responses very well.

Table 3. Performance of bivariate MCR, over baseline approaches

RMSE Kendall 7

Data set % of stations Avg.improvement % of stations Avg.improvement
outperformed  across stations outperformed  across stations

baseline over baseline baseline over baseline

MOR QM BQM MOR QM BQM MOR QM BQM MOR QM BQM

WRFG: 29 100 100 -0.06 0.18 0.17 64 100 100 0.03 0.40 0.41
WRFG2 07 100 100 -0.08 0.16 0.16 79 100 100 0.04 0.38 0.39
WRFGs 00 100 100 -0.07 0.31 0.30 0 100 100 -0.01 0.75 0.67
CRCM; 93 100 100 0.06 0.25 0.25 100 100 100 0.13 0.52 0.53
CRCM, 71 100 100 0.03 0.23 0.23 100 100 100 0.12 0.49 0.52
CRCMs 07 100 100 -0.02 0.35 0.34 14 100 100 -0.01 0.78 0.73
RCM3: 43 100 100 -0.02 0.20 0.20 79 100 100 0.06 0.46 0.46
RCM3, 36 100 100 -0.03 0.19 0.18 79 100 100 0.06 0.47 0.45
RCM33 00 100 100 -0.07 0.31 0.30 0 100 100 -0.01 0.81 0.78

In terms of residuals, MCR had considerably lower residuals when compared
of the various quantile mapping baseline approaches as shown in Table Bl But
as expected, MCR showed marginal increase in residuals when compared to the
respective SOR and MOR based approaches.

Trivariate MCR. The performance of modeling the association among three
response variables was also evaluated and is shown in Figure[fl The performance
is compared against single output, and multiple output models. We also use
as a baseline, an trivariate extension of the bivariate BQM approach, as an
additional baseline. Along with MCR, the trivariate extension of BQR fared best
in replicating the observed associations among three variables when compared
to the baseline approaches.

Additionally, MCR was also able to improve upon its BQM counterpart in
terms of reduction of residuals. MCR produced lower RMSE for all the station
across all the tri-variate datasets with an average reduction of RMSE in excess of
10%. The average improvement of the three variables in terms of rank correlation
7 was found to be 0.41.



334 7. Abraham et al.

Observation

Fig. 6. Three dimensional scatter plot of the observed associations among maximum
temperature, minimum temperature and precipitation as well as the respective forecasts
made by the various single output and multiple output approaches

6 Conclusions

We present a multi-output regression framework that preserves the general asso-
ciation patterns among multiple response variables while minimizing the overall
residual errors by coupling regression and geometric quantile mapping. The pa-
per demonstrates the effectiveness of the framework in significantly reducing
residuals while preserving the joint distribution of the multi-output variables,
over the baseline approaches in all the climate stations evaluated.
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